SCULPTOR WITH SQL DATABASES

26 September 2012
Introduction

Sculptor works with SQL databases by mapping the Sculptor file access commands to SQL statements and submitting these to the SQL database through ODBC. The Sculptor sql command that can be used to submit a general SQL query and fetch results. Please see the reference manual for details.

Each proprietary SQL database has its own design concept and implementation. Behavioural differences between these are inevitable. Sculptor has been coded to minimise these as much as possible. If an issue arises with a particular database or with just one file, consider the possibility that a specific limitation has been encountered. For example, the field name Int4 is accepted by most SQL databases but is a reserved word in MySQL and generates a syntax error.

Known Limitations

Sculptor's ODBC interface has been tested with SQL Server, Oracle, Access, MySQL and PostgreSQL but some ODBC drivers appear not to support record (row) locking and should only be used for updates in single user mode. The only SQL database that has passed all Sculptor's record locking tests is SQL Server.

Oracle (with the Microsoft driver for Oracle but not with the native Oracle driver) is safe in multi-user mode but works by returning the ue (update error) trap from the Sculptor write command when there is a conflicting update. Existing Sculptor programs must be modified to handle this trap in order to work safely with Oracle in multi-user mode.

MySQL

In the ODBC driver, leave the "Dynamic Cursors" option unchecked. At the time of writing Sculptor does not work with MySQL if this box is checked. This may be a bug in the MySQL ODBC driver.

Conceptual Differences between ISAM Files and SQL

The Sculptor Keyed File interface is low level. This provides a high level of control to the programmer and is very fast but at the expense of more programming effort to achieve some tasks. The SQL interface is high level and transaction based. Typically a transaction retrieves or updates many rows in one command. This is easy to program but provides less control and each transaction has an overhead, making the approach slow when only one record needs to be retrieved or updated.

Suppose an application wishes to guarantee that a user can update a set of records as a single transaction. It needs to ensure that no other user can update one of these records until the transaction has completed. Sculptor provides a file write lock, which guarantees that no other user can obtain a record for update until the lock has been released. This achieves the objective but has the disadvantage that the entire file is locked for a time even though only a subset of the records may need to be updated. If kfserver is being used, Sculptor provides the alternative of using the begin() and commit() functions. Sculptor then acquires and holds locks on the records as the transaction reads them but the programmer must write code to deal with a "record in use" status, deciding whether to wait for a lock to be released or to abort the transaction by calling rollback(). In both cases, other users can read the records in an unlocked state.

Many SQL databases do not provide an explicit file lock. Instead, the programmer informs the database that the updates are a single transaction and the database decides how to handle this. It might lock the entire table or it might allow multiple transactions from different users to proceed concurrently in the hope that they will not overlap. If a conflict does occur, the database may arbitrarily choose a victim and abort that transaction. A SQL database may provide some options here but normally there is no low level control. It may or may not be possible to prevent other users from reading the records that are being updated and it may or may not be possible to determine whether other users see these records in the state they were before or after being updated while the transaction is still in progress. These SQL features can be very useful but the point to bear in mind is that behaviour will differ not only between Sculptor Keyed Files and a SQL databases but also between different SQL databases.

Performance Issues
The rest of this document is concerned mainly with performance issues. Overall performance with SQL databases is not as good as with Sculptor Keyed Files but performance can be improved by making small program changes. Sculptor 5.6 introduced substantial performance and functionality improvements to Sculptor's ODBC interface. Sculptor 5.6 programs must use SQL Server 2000 or later.

Improving Performance – Command Choice and Reports
Commands that lock records run slower than read-only commands. Avoid using next, prev, find and match if the record will not be updated. Use nextu, prevu, findu and matchu instead.

If the driving file is open in update mode, a run report command will read and lock records even if the report logic does not update them because Sculptor cannot determine in advance that an update command will not be used. This behaviour can be altered by setting the report_mode flag of the driving file to FOM_READ. The report will run faster with this attribute set or if the file is open read-only, and much faster if the batch_read flag is also ON. The existing state of these flags can be saved before running the report. Example code:

save_batch_read = myfile->batch_read
save_report_mode = myfile->report_mode
myfile->batch_read = ON

myfile->report_mode = FOM_READ

run report …

myfile->batch_read = save_batch_read

myfile->report_mode = save_report_mode

Improving Performance – Batch Reads
In Sculptor 5.5 and earlier, the default setting of the batch_read flag was OFF for Sculptor files but ON for ODBC tables. Starting with Sculptor 5.6, the default setting of the batch_read flag is OFF for both. Defaulting to batch_read OFF improves the compatibility between ODBC tables and Sculptor files but performance can be improved substantially with both ODBC tables and Sculptor files by setting the batch_read flag ON when appropriate. Normally, the batch_read flag should be set ON for any loop that reads records in an unlocked state.

In the following example, setting the batch_read flag ON makes the loop run up to 10 times faster.

MYFILE->batch_read = ON

while (TRUE) {

 nextu MYFILE nsr=BREAK

 …

}

MYFILE->batch_read = OFF
Improving Performance – Avoiding Unnecessary Locks
If a next record loop will only write back some of the records it reads, it will be better to use nextu to read the records unlocked and then use read to lock the record for update only if necessary. Example:

while (TRUE) {

 nextu FILE1 nsr=BREAK

 if (update_needed) {

 read FILE1 nsr=CONTINUE

 <set changes>

 write FILE1

 }

}

The above code will be almost as efficient as using next, even if all the records are updated.

Improving Performance - Transactions
By default, Sculptor makes each insert, delete and write command a single transaction on a SQL database. This provides maximum compatibility with Keyed Files but is only moderately efficient on SQL Server and on other SQL databases can be very slow. This approach is fine for interactive programs that work with one record at a time but when many of records are being processed in a loop, it is much more efficient to make them a single transaction. In the examples below, the begin() and commit() calls make the loops almost twice as fast on SQL Server.

Example: insert

begin()

while (TRUE) {

 nextu FILE1 nsr=BREAK

 FILE2 = FILE1

 insert FILE2 re=IGNORE

}

commit()
Example: write

begin()

while (TRUE) {

 next MYFILE nsr=BREAK

 …

 write MYFILE

}

unlock MYFILE

commit()

Example: delete

begin()

while (TRUE) {

 next MYFILE nsr=BREAK

 if (…) delete MYFILE

}

commit()

Although transactions improve performance, it is best to keep them a reasonable size. Microsoft recommends avoiding large transactions and Sculptor Keyed Files are less efficient with a large transaction than with no transaction. If the loops in the above examples will process more than a few thousand records, the following technique should be considered, assuming of course that it is not essential to make the entire update a single transaction for application reasons.

tmp.BatchCount = 5000

begin()

while (TRUE) {

 next MYFILE nsr=BREAK

 …

 write MYFILE

 if (--tmp.BatchCount <= 0) {

 commit()

 begin()

 BatchCount = 5000

 }

}

commit()

Improving Performance – The writekl Command

NOTE: Improvements planned for an upcoming Sculptor 6 release will make the write command just as efficient as writekl, so this change will become unnecessary. The writekl command can still be used of course if required by the application logic.

The following code is slow with SQL Server because the SQL Server write command does not automatically unlock the record. Consequently, after each write, Sculptor has to send an extra unlock to be compatible with Sculptor Keyed Files. This not only unlocks the record but also releases the current result set, which then gets rebuilt by another next command.

while (TRUE) {

 next MYFILE nsr=BREAK

 …

 write MYFILE

 …

}
Since the SQL Server next command unlocks the previous record, the enforced unlock is not needed in the above code, so Sculptor has introduced the writekl (write keep lock) command. Replacing the above code with the code below increases performance.

while (TRUE) {

 next MYFILE nsr=BREAK

 …

 writekl MYFILE

 …

}

unlock MYFILE
Note that an unlock command has been added after the loop. Although the nsr trap unlocks the last record, this unlock is necessary in case the loop breaks for any other reason, such as a conditional test. Even if not strictly necessary, it's wise to have the final unlock in case the code is later modified.

End of document
