Contents
Chapter 9 Reports	2
Important Example simple.r	2
!auto	4
!init , !heading, !footnote !title, !final , !on starting , !on ending	5
The print and printh commands	6
More on report system variables	8
Report Filters - !select , !exclude , startrec, endrec	9
!xfile	11
Controlling where output from the report goes – printers etc	12
setfont() - Printing effects and colours for M/S windows	13
Drawing to report output or windows	14
Printer parameter files (ppf)	16
Exercises 9	16
Chapter 10 – text files, json , file management	18
open #, close #	18
get #, put # , getfield #, putfield #	19
JSON files (Java script object notation)	21
Exercises 10	22
Chapter 11. More on the Sculptor filing system. Alternate indices , multiuser systems , locking	22
Locking	22
Locking and the write/insert/delete commands	24
readlock/ writelock	24
Alternate indices	26
Building an index for an existing file	28
Using ddeditor to add an index	28
Using kfbuild to initialise an index	28
Reformatting a file	29
Exercises 11	30
Chapter 12. Client/Server, remote procedures ,	30
calling other programs in general	30
openfile command	31
Starting kfserver	31
Exec and remote exec	32
SCMASTER environment variable	34
Exercises 12	35
Chapter 13 Windows programming (3)	36
Simple tables	36
Table event function for EV_SELECT	38
A note on the rows and max_line properties .	39
Table and list box functions	40
table_get_key(obj_id, relative_row)	42
table_set_key(obj_id, abs_topline , relative_row)	43
Editable tables	43
Table event functions for EV_VALIDATE and EV_SELECT	45
Setting style flags at run time	46
TAB windows	47
The prompt command in more detail	49
Exercises 13	49

[bookmark: _Toc83562376]Chapter 9 Reports

In what follows please change directory into samples/reports where there are a number of programs we will discuss.

[bookmark: _Toc83562377]Important Example :- simple.r – a skeleton program that still does some useful work.

The first is simple.r listed below.

!include <sculptor.h>
!include <printer.h>

!ofile customer "../../solutions/data/customer" read

	run report CustRep
	exit

!report CustRep {
!drive customer

print customer.Code, customer.Name, customer.Addr1,\
 	customer.Addr,customer.Addr3, customer.PostCode

end

}

The first few lines of this program should be familiar by now although we have a new standard include file printer.h which contains useful definitions to help with printing that we will be using.
The first executable line runs the report . There are a number of elaborations on the run report command to control where the output goes. In this example the output simply goes to the default device – the screen .

The report itself is the block of code from !report to the closing curly brace.
After !report we have one or more lines of directive – only one in this case to indicate the "driving file" . The driving file is a file previously opened in the program outside the report.
The next line is a single statement – print which simply prints the parameters to the default output device. In a real world program there may have been hundreds of statements following the print. All such statements would be considered as part of the driving logic of the report.

The connection between the driving logic and the driving file in this simple skeleton is that the driving logic is carried out precisely once for each record in the driving file in key order sequence – ie the report walks the driving file . Hence our simple program above prints out the fields of each record in customer.
The statement end indicates that the driving logic should stop processing at that point and begin again. It is strictly necessary in this case because there are no further statements.

In the reports you may see later or in real life, do not lose sight of the very simple structure of a report. Even if the report is thousands of lines long they all look like this :-

!report MyReport {
<! directives >
	driving logic statements
	[end]
}

Notice that we have made no window declarations. We will definitely be needing some windows, to pick up parameters for example, but we wont clutter up the big picture with them just yet.

The program print.r shows skeleton examples of a number of features, so have it in view as you read the next few sections. Amongst other things it demonstrates that you may have more than one report in a single program.
[bookmark: _Toc83562378]!auto

If you declare a temp variable at the same level as, say, the driving file , it has global scope and would properly belong outside the report. If you want to declare a temp local to a report use the form :

!auto myautoname , "My Heading" , i4
for example. A useful feature of auto variables is that if you assign a value in the declaration the value is updated once per driving logic cycle. Eg

	!auto nord ,, i4 =- nord + 1

Temps declared inside standard subroutines, are local to the subroutine – as you would expect for any subroutine.

[bookmark: _Toc83562379]!init , !heading, !footnote !title, !final , !on starting , !on ending

It is easy to give functionality to a report by creating what look like subroutines with specific names such as !init, !heading, !final. They are all subroutines which the system recognises and fires off at the right time.

The standard set of report auto called functions are :
!heading - called at the top of each page
!footnote - called at the bottom of each page (see sys.FootLines below)
!init - called once as the 1st thing in a report
!title - called once after !init , if there is one, before the 1st print in the driving logic
!final - called once after the last record of the driving file has been processed
!on starting field_id - called when field_id changes before the driving logic
!on ending field_id - called when field_id changes after the driving logic

Notice that !init sets some system variable. sys.LeftMargin is useful for formatting and it meaning is obvious. The other sys variable are dealt with shortly.

[bookmark: _Toc83562380]The print and printh commands

We have already seen the print command in print.r and it is obvious what it does in its most basic form. There are some useful variants on the print command which, together with system variables, are there to help keep control of the content and appearance of the output.

If you print a set of fields separated by a comma :

	print x,y,z
the three fields will be printed with a default number of spaces between them the number of which are determined by sys.Gap .

The number of lines left on a page (sys.LinesLeft) is decremented each time you do a print but only if the print throws a new line. The following makes this clear :-

i)	print
ii)	print "Hello"
iii)	print x,y,z

iv) 	print x,
v) 	print y,
vi)	print z
vii) print x ; y; z

i, ii, and iii each increment the line count by 1 . iv , v and vi are the equivalent of iii , ie x ,y and z are printed with the standard gap after each and then a new line is thrown by vi because it does not end in comma.
vii prints x y and z with no standard gap between them and then throws a new line.

Have printh.r to hand for the next section.
Another useful variant on the print command is printh. In a print/printh statement, you will sometimes want to print a field heading rather than a field value - this is indicated by using *field-name instead of field-name. The printh command ensures that headings are data are more easily lined up by printing the field/field heading in a width which is big enough to accommodate the largest of the 2 and then aligning the data inside the field width, whatever that comes out as, in a sensible way.
Eg look at sample/reports/printh.r

!temp fld1, "Long Heading with a short field" , i1
!temp fld2 ,"Short heading" , a60
!temp fld3 ,"Another field", i4/dn

.... later :-

		printh *fldl1,*fld2, *fld3
		printh fld1,fld2,fld3

This will line up the 3 fields under their headings. Try it with and without the 'h' – it does not look good without.

If we now go back to print.r, another feature is shown in the second of the two reports :-

print [x]
printh [x]

If you wrap a variable around with [] , the print command will print the same number of spaces as it would have printed in the normal field width . This comes in very handy at times.

Finally, in report ExamplePrint we have just one function call in the driving logic. From a style point of view this is fairly normal. It is always best to keep sections of any program code reasonably short by calling one or more functions.
[bookmark: _Toc83562381]More on report system variables

Each time the report goes to a new page , the heading routine is called automatically by the driving logic . The number of lines available per page is controlled by the standard system variable sys.PageLength and the number of lines left on the the current page , is given by sys.LinesLeft. These two system report variables control exactly when the subroutines !heading and !footnote are called . Each time you issue a print command with no trailing comma or semi colon , the line count is increased by one. You will see this in the output of ExamplePrint report in print.r.

If you have a !footnote routine defined, the end of the page is not when you have output sys.PageLength lines but sys.PageLength – sys.FootLines lines . In its turn, sys.FootLines may be set in your !init {} routine . If you don't do this the compiler will hazard a guess based on the number of print statements in your !footnote {} routine .
[bookmark: _Hlk83047640]
There are a large number of report system variables that are of use – look them up under report system variables in the main reference manual.
Most of the time we rely on system variables to let the run time system throw new pages . You can however , throw a new page any time you wish wiht the command
		newpage
As you would expect , this resets sys.LinesLeft.

[bookmark: _Toc83562382]Report Filters - !select , !exclude , startrec, endrec

Have the source code for samples/reports/filter.r to hand for this section.
There are a number of ways to control or filter which records your driving logic processes. In the most obvious way you could just test the current record in the driving logic.

		if (SOME CONDITION) {
			<< All remaining driving logic here >>
		}

However, it is usually best to use !select, !exclude, startrec and endrec. The declarations go at the top of the report after the driving file declaration.

Eg

		!select if (orders.Total > 10000)
		!exclude if (orders.OrderDate < sys.Date – 365)

In these 2 examples the condition is tested against the current value of the orders file. The driving logic is only carried out if the condition is satisfied for the next record in the driving file. In the case of !exclude the driving logic is only carried out if the condition is not satisfied. Cleary these 2 constructs could be replaced by suitable logic in the driving logic itself but if possible it is best done this way.

You may have any number !select and !exclude conditions. If you mix the two , then the order of declaration is important. For example , if a record passes the select test it stays selected even if a subsequent !exclude excludes it. See the reference manual for a fuller explanation.

Reports have a special system variables, startrec and endrec, which can be set inside the !init routine. They are local to each report .

Eg

	!drive customer

	!init {
		startrec key = "C"
		startrec key = "D"

	}

In this case the orders file is read from customer.Name = "A" to customer.Name "D" only. If "A" did not exist processing would start at the next record to where would have been. If "D" does not exist processing would stop before the point where "D" would be in key order sequence.
Again, you could have achieved the same effect as far as the output is concerned by program code in the driving logic. There is a difference here however. Setting the start record key in this way causes the system to do a read from the start position thereby jumping over all records prior to the first key in use. This makes no difference on a small file but if the orders file was large it could save a long pause whilst the system gets to the first record for processing.

Note the syntax of !startrec requires the "key=" clause. Whatever is in this clause is used as a lookup key in the driving file. There may be more than one key in which case the keys are separated by commas in a natural way.

There is one other reason to use !select, !exclude , startrec and endrec. If you use these functions and do not try to control when the driving logic is called it gives the system the chance to keep track of some typical report data. These are functions such as :-

		min(field)
		max(field)
		average(field)
		total(field)

The field may be any field referred to in the driving logic. In some cases you will want to keep track of these values yourself in others it is quicker to let the system do it for you. Note these functin are only of use after the last driving logic record has been read.

[bookmark: _Toc83562383]!xfile

Have reports/xfile.r to hand for this section.
This is the last of the report declarations to consider. It allows you to lookup another file at the start of each driving logic cycle .
In xfile.r we have :
	!xfile customer key = ordhead.CustCode

The sole key field in customer in a customer code which is maintained for each ordhead record. The same effect could have been achieved by reading customer in the driving logic :-

read customer key = ordhead.CustCode traps = IGNORE

As ever, if there was more than one key field just separate them with commas. We will be looking at secondary indices later and will update the !xfile after that has been brought into the picture.

[bookmark: _Toc83562384]Controlling where output from the report goes – printers etc

Have the program sample/reports/prdest.r to hand for the following section.

The run report command has a clause which controls the output destination. By default this is a fairly basic screen view. To send a report to a named printer use the form :
		run report MyReport to "printer:Cannon Ink Jet"

If you want the windows print manager to deal with the destination printer use the form
		run report MyReport to "print manager"

If you want to send the report to the default printer :-
run report MyReport to "default printer"

If you want to send the report to a file :-

		run report MyReport to "fred.txt" ppf="nullp"

The "ppf" clause indicates that we do not wish to use a printer parameter file (see the online manual for information on the ppf) . If you miss this out the output may have control characters in it.

If you need to have a list of a system printers use the EnumPrinters() function. There are other report system variables as we have already mentioned . In the connection of printers sys.Printer is the printer the current report is outputting to.

[bookmark: _Toc83562385]setfont() - Printing effects and colours for M/S windows

Have samples/reports/fonts.r to hand in what follows.

There are a number of system variables and function calls that you can use to control fonts, colours and sizes. setfont() is the easiest way to control fonts. The syntax is :

setfont(FontName,Size,Flags)

Some examples will make this clearer :-

 i. 	setfont("Courier", 10, FONT_NORMAL)

 ii.	setfont(sys.FontName, sys.FontSize, FONT_BOLD)

 iii. setfont(sys.FontName,sys.FontSize, sys.FontFlag | FONT_UNDERLINE)

In (i) we simply set the current font paramers to courier at size 10 with a normal font.

In (ii) we set the font parameters to what they already are (as given by the read only system variables sys.FontName and sys.FontSize) in bold but with no other effects such as italics or underline.

In (iii) we add FONT_UNDERLINE to whatever font characteristics we already had. For programmers familiar with bit masks the logical or operator , "|" , sets the bit in a bit mask that controls the characteristic. Generally having a single FONT_ in parameter three sets the font to that characteristics alone. Having 2 or more separated by logical or , "|" , sets the font to all the FONT_ items at the same time .

Remember to include <printer.h> . If you look inside this header file you will find many options for the 3rd parameter.
[bookmark: _Toc83562386]Drawing to report output or windows

Have samples/reports/draw.r to hand for this section.

If you take a look in the main reference manual under draw functions you will find a number of drawing functions which can be applied to any output device – a window in an interactive program or in the output to a report. All these functions are pass throughs to the windows API. C/C++/C## may already be familiar with this material. We will give examples of just a few functions here.

You should also ensure that you include <draw.h> in any program using drawing functions.

When you use any of the drawing functions below you should commence with
		BeginPaint(windowid,startx,endx)
and finish with
		EndPaint(windowid)

This ensures that resources are allocated and deallocated in the windows API. Opinions differ as to whether this is necessary but as it does not harm you may as well do it. For reports BeginPaint(NULL,0,0) is appropriate.

The windowid may be a named window in your program or, if set to NULL, the default report output media. There are a large number of drawing functions. To mention just a few obvious ones :-

We will use x,y coordinates to determine the draw position. The system variable sys.Unit determines if the units of x,y paramters are in device (ie pixcel) units , centimetres or inches

sys.Unit = UNIT_DEV /* also availaable UNIT_CMS, UNIT_INS */
MoveTo(Windowid,x,y)
LineTo(Windowid,x,y)
Rectangle(Windowid,x1,y1,x2,y2)

It should be clear what these functions do from draw.r .

Remember to windowid = NULL to send output to a report.

To control pen and brush colours experiment with functions such as the ones in the example below. Pens affect lines brushes affect the fill inside bounded figures such as rectangles.

	SetPenColor(wintask, RGB_YELLOW)
	SetPenType(wintask, DP_SOLID)
	SetPenWidth(wintask, 2)
	SetBrushColor(wintask, RGB_GREEN, RGB_MAGENTA)
	SetBrushType(wintask, DB_DIAGCROSS)

[bookmark: _Toc83562387]Printer parameter files (ppf)
 
For most situations where printing is done to a windows printer ppf's are not used and we use commands and functions such as setfont() to control output.
 They are mostly a hangover from version 2 unix/linux printing where print output is sent direct to a printer with PCL escape sequences embeded in the output. If you need to do this please see the main reference manual.

[bookmark: _Toc83562388]Exercises 9

Change directory into working/chap09

Exercise 1 - !select

Write a simple report, ex1.r, to list the details of customers whose balances exceed their credit limit by more than 10%. To test that your report is responding to changes in the credit limit you can run (from working/chap10)
		srepw ../proggen/customer
to edit the data in customer or use your program from chap05 if it includes this field (the solution does not)

If you move the output window of programs such as samples/reports/xfile.r there is a blank window behind . Find out what this is and avoid it in ex1.r .

Exercise 2

Write a program , ex2.r , which provides a front end to run either of two reports. Offer the option of to screen or to print manager

The first report should be lifted from ex1.r .

The second report , which requires parameters, should be show the orders, in detail, as follows :_

Report only sales between two user specified dates.
Show the order header fields and then indent underneath to show the orderlines . There is a one=many relationship of ordhead to odrlines through the OrderNo field.

Indicate the page number in a footnote on each page .
Create an array of n8.0/my to store the monthly sales , regardless of year , for analysing which months of the years are best for sales.
final page with no footer – display the monthly accumulated array and the total values or all orders using the total() function

Exercise 3 – fix the bugs

There is a program in working/chap09/bug.r . It should do something similar to ex1.r but does not quite work :-
1. There is no output.
2. After fixing (1) the headings don't appear on the report
3. There is a function CreditLimitExcess() used by !select which should apply the rule that anyone with an excess of £100 over their credit limit or with an excess greater than 10% of the credit limit should be on the report. The function does not work.

[bookmark: _Toc83562389]Chapter 10 – text files, json , file management

Change directory into samples/seq_file and look at seq.r for the next section.

There are a number of built in functions to help manage files and directories such as :-
remove("DoomedFile.txt") /* delete a file */
		access(fname,amode) /* check fname access */
		mkdir(dirname) /* create a directory */
For a full list look up one of the above in the reference manual where you will find a number of useful functions which are pass throughs to the operating system. Some may not work under Linux – check before use.

We will be using access() shortly . Notice the declaration of <files.h> is required for the use of constants such as TEST_EXISTS .

You will see in seq.r a form of the prompt command we have not encountered so far – see the main reference manual for further explanation if required. Note also the line continuation symbol "\" which allows the command and its qualifiers to spread over more than one line.

You can write to or read from an ordinary text file but not both at the same time.

[bookmark: _Toc83562390]open #, close #

To open a text file the syntax is :-

	open #UnitNumber, Filename Open-mode

The unit number is a positive integer, the filename a string or string variable and the mode is one of read , create , append , Eg
	open #1, "fred.txt" read
	open #2, MyStringVar create
	open #2, MyStringVar append

The create mode option will overwrite any file of the same name without warning so check if the file exists first if it is important using the access() function as shown :-
	if (access("mytext.txt", TEST_EXISTS) = OKAY) {
		prompt "The file exists"
	}

The append mode opens in update mode with the write position continuing from the end of the existing file. There is no harm in appending to a file which does not currently exist.

To close a text file use the syntax close #UnitNumber eg
		close #1

Once a file is opened in a particular mode it may only be used in that mode . However if you close and open it again you can open it in any mode you choose.

[bookmark: _Toc83562391]get #, put # , getfield #, putfield #

To write to a text file opened in create/append mode use, for example
	put #1, x,y,z
This will output to channel 1 a text representation of the parameters separated by the value of sys.Separator and then issue a new line. You can set this system variable to anything you wish, the default is comma but it may be set to any value including a multi-character string simply by assigning it :-
		sys.Separator = "\t"
sys.Separator = "XYZ"

The putfield # command is useful for writing strings which may contain characters that would confuse other applications because an output string contains special characters . For example suppose we have
		
	sys.Separator = ","
	x = "A,B,C"
	y = "ABC"
	putfield #1, x,y

If we output this to a file with get # the file will look like the string inside the quotes for both x and y. If we use putfield #, however y will be put as before but the system realises there is a problem with the commas inside the string clashing with sys.Separator and it will output the whole thing with double quotes around it .
Again if we have
	x = "AB\"C"
	y = "ABC"
	putfield #1, x,y

x will be output with double quotes around as well as double double quotes around "B" in x it. This help applications such as excel to import text data.

We now come to use get# and getfield # . You will see from seq.r that they work in a sensible way . If channel #1 contained "X,Y,Z"
get #1, x
would set x to "X . Whereas :
 		getfield #1, x

would set x to X,Y,Z . Try runing seq.r to make this clear.

[bookmark: _Toc83562392]JSON files (Java script object notation)

change into samples/json for the following section and have test.json and json.r to hand.

JSON is a very handy way to load from a text file to named fields in a record structure without having to worry about the order of the data. It is used a great deal for loading parameters into programs. The text file is flexible as to where data goes but does have a structure which you must get right.

eg
{
	"x" : "A value for this field" ,
"y" : "A value for this field"

}

The JSON file is bounded by opening and closing curly braces then each line comprises a field name , a colon separator , a value . Each line apart from the last has a comma on the end. If you get the commas wrong JSON will not work.

Between the braces you may put C style comments if you wish.

In jsson.r we have a record structure with a set of field names . To read the values into a record use the function :-
	nval = read_json_values("test.json", MyJSONRec, JSONXML_MINIFY)

If nval has the value zero or less than the number of fields you were expecting , there was an error , either the file did not exist or , more likely, the format of the file was wrong. Try removing one of the commas in test.json to see this.

[bookmark: _Toc83562393]Exercises 10

Change into working/chap11 for the following exercise

Excercise 1
create ex1.r to export the data file "../data/stockitem" to a csv file. Check that it loads into excel .

[bookmark: _Toc82947710][bookmark: _Toc82954875][bookmark: _Toc82954982][bookmark: _Toc82955005][bookmark: _Toc82955044][bookmark: _Toc83562394]Chapter 11. More on the Sculptor filing system. Alternate indices , multiuser systems , locking

[bookmark: _Toc83562395]Locking

Change directory to samples/locking and have lock.r to hand for this section.

When a file is opened in update mode any standard file read access command such as read/next/prev/find/match etc attempt to lock the record found so that if another process tries to lock the same record at the same time it will fail.

If you run lock.r the program stops after a read and prompts the user. Whilst the first instance of the program is still sitting at the prompt run it again and you will see that the second process waits on the locked record until the first invocation of the program is completed by the user pressing return and the program exiting. The wait is not caused because process 2 cannot read the record process 1 has locked , it is rather because process 2 cannot apply its own lock.

In lock.r we did not set traps to IGNORE. Had we done so and then tested sys.Traps it would have contained the value TRAP_RIU , Record In Use.

All the file access commands have a "u" variant which allows you to read a record without locking it. This implies two things :- The process does not apply a lock of its own , neither does it respect locks applied by other processes applied to the record in question.

Eg

readu stockitem
	findu stockitem
	nextu stockitem

etc etc

[bookmark: _Toc83562396]Locking and the write/insert/delete commands

If you have read a record in unlock mode you cannot write its file buffer back to the file. See samples/locking/write.r

Eg assume the readu below is successful

	readu stockitem
	stockitem.InStock = stockitem.InStock + 100
	write stockitem

The write command will fail with TRAP_NRS , No Record Selected, because of the “u” on the read. If the readu was changed to read the write would normally succeed too.

After a successful write or insert the record concerned is left unlocked. A write could be thought of as a delete followed by an insert .
The delete command obviously does not leave a record locked but it could fail if the record concerned was not locked – in just the same way as for a write .

[bookmark: _Toc83562397]readlock/ writelock

These 2 commands lock a whole file at a time.

Eg

		readlock stockitem
		writelock stockitem

As usual, you could put a Traps=IGNORE clause on the end and check sys.Traps for problems. A read lock allows other readlocks but prevents writelocks. A writelock prevents any kind of lock. Remember that a standard read/next/prev/find/match on a file open in update mode will attempt to create a write lock on the record.

Before we finish with locking it is worth restating that locking only applies to files opened in update mode :
eg
		!ofile stockitem "../data/stockitem" update
If a file is opened in read only mode it does not apply locks of its own or respect locks by other processes – ie you can forget locking completely
eg
!ofile stockitem "../data/stockitem" read

[bookmark: _Toc82947711][bookmark: _Toc82954876][bookmark: _Toc82954983][bookmark: _Toc82955006][bookmark: _Toc82955045][bookmark: _Toc83562398]Alternate indices

Change directory to working/data for the next section.

You may have more than one set of keys to a file by creating what are known as secondary or alternate indices. Use the index menu in ddeditor to create an alternate index for a set of keys. As an example let us take our orders file which contains order number and customer codes and assume it contains just 10 records as shown.

Order No Customer

1			fred
2			fred	
3			bill		
4			bert
5			sue
6			me
7			you
8			fred
9			fred
10			bert

A rewind followed by 10 next commands and a print would list out the table as above. If we had an index called,say, idx_cust we could get a list out in customer order with commands :-

		rewind ordhead index = idx_cust
		for (i = 1 ; i <= 10 ; i = i + 1) {
			nextu orderhead index = idx_cust
			print ordlines.CustCode, ordlines.OrderNo
		}

This yields the file in the order shown:-

Order No Customer

4			bert
10			bert
3			bill
1			fred
2			fred
8			fred	
9			fred
6			me
5			sue
7			you

If you change directory now into samples/altidx and look at altidx.r we will see this idea in practice.

The main point to make is that any file access command which moves a file pointer eg next/find/read/rewind/wind , may have an index=clause. Once the clause is included in the command its behaviour is just the same as if the secondary index was a primary index – they have equal status except that we must use the extra clause.
The sample program sample/altidx/altidx.r shows a number of points of interest that demonstrate what was said above. One point not covered so far is that the driving file in a report may also be a secondary index.
eg
	!drive MyDrivingFile indx = MyAltdIdx

As you would expect, the report in altidx.r, which just prints out all the ordhead order numbers and names, does its work in ordhead.CustCode order instead of ordhead.OrderNo as it would without index = clause.

[bookmark: _Toc83562399]Building an index for an existing file

[bookmark: _Toc83562400]Using ddeditor to add an index

If you wish to add an index to an existing data descriptor you will need to define the index in ddeditor and then build the data for the index. The ddeditor has an option at the bottom left to "add index" . Choose this option. By default the index will be called idx_alt1 – it is best to use your own name.
Having create a new index you need to specify which field or fields to put in the index

[bookmark: _Toc83562401]Using kfbuild to initialise an index

To initialise the new index change directory to the data directory and give a kfbuild command

Eg

			kfbuild MyFile
The index is now ready for use. In the data directory MyFile.idx you will find a file called MyIndex.k – a standard sculptor index just like MyFile.k. You don't normally need to know this when writing programs but if you get run time errors mentioning anything MyFile.x then a kfbuild will usuallly sort the problem out.

You can have as many alternate indices as you wish – within reason.

[bookmark: _Toc83562402]Reformatting a file

If you add , remove or change a field in a data descriptor, you must reformat the file before you use it.
Follow a procedure like the one shown which reformats the stockitem file.

		mkdir tmp /* at the same level as data *
		cd tmp
		copy ..\data\stockitem*.d
		cd ..\data
		ddedit stockitem /* make changes to descriptor */
		
		reformat tmp/stockitem ./stockitem

In general , if you have a program which throws a run time error because it can't open a file and you are sure the path is correct then always recompile the program in case the ".q" is out of sync with the ".d" and if that does not work use kfbuild .

[bookmark: _Toc83562403]Exercises 11

Exercise 1 – ddeditor, kfbuild

Create a customer postcode index on the customer file . Write a short program ex1.r with a report of the customers in postcode order .

 
[bookmark: _Toc82947706][bookmark: _Toc82954871][bookmark: _Toc82954978][bookmark: _Toc82955001][bookmark: _Toc82955040]
[bookmark: _Toc83562404]Chapter 12. Client/Server, remote procedures ,
[bookmark: _Toc83562405]calling other programs in general

Client/server computing means many things in many settings. For us, we simply mean that one machine, a server , provides data, programs and services to a set of client machines. The server is normally a passive part of the system which listens for requests from clients which initiate activity. The server machine must have a process running to listen for requests, in the case of Sculptor this process is called kfserver.

For testing and development purposes we can reduce client and server down to one machine. When the testing is complete we can deploy the same programs in a true client/server environment by setting the name of the server correctly.

Example - Assume we have a machine called MyBox with IP address 192.168.1.1 and that we have a data file c:/v6train/working/data/customer

We can try opening the customer file with any of these 4 formats :-

[bookmark: _Toc83562406]openfile command

openfile customer name = "c:/v6train/working/data/customer" update
openfile customer name = "../data/customer" update
openfile customer name = "192.168.1.1:c:/v6train/working/data/customer" update
openfile customer name = "MyBox:c:/v6train/working/data/customer" update

formats 3 and 4 will fail if kfserver is not running on MyBox.
Once a file is open in client server mode there is nothing more to say about it beyond what we have already covered when processing files locally. All file access commands work in the exactly same way and you cannot tell by looking at a program whether it is performing its data access in client/server mode or "single tier" except for the openfile statement. This makes life easy for development and testing purposes.
[bookmark: _Toc82947707][bookmark: _Toc82954872][bookmark: _Toc82954979][bookmark: _Toc82955002][bookmark: _Toc82955041][bookmark: _Toc83562407]Starting kfserver

For full details on starting kfserver see the main reference manual but there is normally not much to it .
On windows we proceed thus :-
cd /SCULPTOR/server (or wherever Sculptor lives)
 srepw kfsmonw

You may need to press the button to create a service if the server is not already running.
This should be run as administrator. Normally kfserver is run a s a Windows service. If the service does not exist kfsmonw offers an option to create it. From there you can then stop and start the service as required. kfsmonw also offers options for monitoring kfserver.

On Linux/Unix platforms we start kfserver thus :-

	cd /home/SCULPTOR/bin
 ./startkfs

If the start is successful startkfs will show a PID number and the kfserver process is run in the background and will continue after you log out.

To stop kfserver give the command

		./stopkfs

[bookmark: _Toc82947708][bookmark: _Toc82954873][bookmark: _Toc82954980][bookmark: _Toc82955003][bookmark: _Toc82955042][bookmark: _Toc83562408]Exec and remote exec

To call one program from another using a command line equivalent to what you would type in at a standard command prompt for the operating system we use the exec command.

Eg

			exec "srepwc ../chap06/ex3"
			exec “myother prog > report.txt”

Note that the string parameter to exec is just passed on to the host operating system to deal with and the command is processed in exactly the same way as if you had typed it in whilst in the current directory.

This command also works in client/server mode - we just need to make it clear which machine is to process the command and we must establish a default directory to execute the command .
Eg
	exec "srepwc c:/stephen/v6train/working/chap11/test" on "MyServer"

In most cases a remote exec like this will call a script which establishes and environment for the command string to run it. The command above could fail if , for example, the bin directory for SCULPTOR was not on the standard path.

The other main reason for an exec to fail is permissions. When running kfserver it is usually running as root or administrator but it is easy to neglect this.

On return from an exec the system variable sys.Status will be set to zero if there was no error. Note carefully that we need to give an absolute path in the remote exec because we do not know what the default directory or default path of the server program is. Also you should not call interactive programs on a remote server !!!

There are other variants of the exec command - see the online manual. There are also other functions to call programs locally such as run() which are more suited to calling windows programs on a local machine.

Client/server remote execs are useful when you have resources such as printers, device drivers, odbc drivers etc which are installed on one machine only on a network.

[bookmark: _Toc83562409]SCMASTER environment variable

Most of the time your Sculptor programs will be run locally event if they access remote data and sometimes call a non-interactive program on a remote server

If this environment variable is set you can make use of it to store master copies of Sculptor binaries on a central server machine such that when the programs are called on a local machine the system checks to see if there is a newer version on the server and copies that newer version to the local machine if such exists. You must remember to call srepwc with a colon in front of the file name. In this form the system assumes that you keep your binaries in Sculptor/app on both client and server.

Example

		SCMASTER = MyHost:\SCULPTOR
		srepwc :myprog

If MyHost/SCULPTOR/app/myprog.q is newer that c:\sculptor\app then the old file is overwritten with the new and then called.

Lookup SCMASTER in the manual to find variations which allow you to put your binaries in any directory.

 
[bookmark: _Toc83562410]Exercises 12

Exercise 1

Copy chap06/ex1.r to chap11/ex1.r and add the following features :-

i) create a ProgParams record with fields for ServerName, DataPath
ii) Use JSON to load the params
iii) Change all the !ofile declarations to just !file and remove the opening mode
iv) Create an OpenFiles() function which opens all data files using ProgParams

Try running the same program on different data sets eg working/data.bak and working/data and just a junk servername

[bookmark: _Toc82954858][bookmark: _Toc82954965][bookmark: _Toc82954988][bookmark: _Toc82955027][bookmark: _Toc83562411]
Chapter 13 Windows programming (3)

[bookmark: _Toc82947694][bookmark: _Toc82954859][bookmark: _Toc82954966][bookmark: _Toc82954989][bookmark: _Toc82955028][bookmark: _Toc83562412]Simple tables

Refer to the examples in the directory tables/table* for the following . The data referred to is ../tdata/fred .

A table is a scrolling, columnar edit control. Simple tables, as distinct from editable tables which we cover later, can be supplied with data from one of 3 sources :-

		A file
	 	An array or record with arrays in it
		A function

A skeleton example of these 3 types of table lives in samples/tables/table1.r. Take a look at this example in conjunction with the rest of this section.

When you create a table in spd there is a field in the properties sheet called the "source object". This is what controls the flow of data into a table. Setting the source object to a file or array will supply the table with the whole file or array as a scrolling table. In the case of single dimension array there is just 1 column. In the case of a file the default behaviour of the table is that each of the fields of the file give rise to a column.

The optional display object property may be left empty or may be a field or, most often, is a record structure. For example let's say we have a table whose source object is a file called fred with fields given by the pdes output shown :-

KEYED file: ../tdata/fred

Fields: 8, Keys: 1, Record length: 41, Key length: 10

 Field Name Type&Size Format Heading
 ---------- --------- ------ -------

KEY FIELDS
 1:f1 :a10 : :f1

DATA FIELDS
 2:f2 :i4 : :f2
 3:f3 :i2 : :f3
 4:f4 :u1 : :f4
 5:f5 :d4 : :f5
 6:f6 :r8 : :f6
 7:f7 :n4.0 : :f7
 8:f8 :n8.0 : :f8

Furthermore let's suppose we only wish to show the columns for f1 and f5, we can define a record structure like the one shown below and set the display object field of the table to this record.

!record MyDisplayObject {

	f1 ,, a5
	f4 ,, a5
}

The table will match up the names in the record with the names in the file buffer. Note that the data types do not have to match completely. Sculptor will always match up data types as best it can in a common-sense way. In this case f4 is being coerced from an integer to an alpha and f1 is being reduced from an a10 to an a5. The display object will default to the source object if not given. If there is a display object it should be thought of as an object through which a single row of the source object is filtered before being displayed in the table.

[bookmark: _Toc82947695][bookmark: _Toc82954860][bookmark: _Toc82954967][bookmark: _Toc82954990][bookmark: _Toc82955029][bookmark: _Toc83562413]Table event function for EV_SELECT

If you have defined an event function for your table it will be called according to the rules we should now be familiar with, ie if no event enable restrictions are given then the function is called every time something happens to the table otherwise it is called only for the specifically enabled events. Assuming our event function is called MyFunc() then

			MyFunc(eventcode,winobj,row_number)

is called. Some variants of this event function call have more parameters than shown here – it depends on the value in evcode , ie why was the function called. As we have already noted the names of the parameters are not significant - it is the order. Therefore, even if you are only interested in the row number you must still declare the 1st 2 parameters. The third parameter is always the row number. Other parameters will arise when we look at editable tables later .

In the case of files or functions used as source objects, when the event function is called due to EV_SELECT (ie the user clicked on a cell in a row/col) the display object will contain the value(s) of the row selected. If no display object is given and the source object is a file then the file buffer will be updated with the values of the selected row but notice that this only happens because the file buffer is the default display object .

 In the case of an array, obviously, we can get to the selected value by referencing MyArray[rowno] .

If the source object is a function, called MyFunc() say, then for each row of the table MyFunc() will be called when the system needs to know what the cells of tha table contain – say after display MyTable . What happens after that is up to the programmer. A display object is required in this case and the display object will be displayed in the row for which the function was called after the function returns. Normally MyFunc() will set a value of the display object. The source object function is called with the following parameters :-

		!function MyFunc(evcode,winobj,row_number)
			<< make assignments to the display object here >>
		}

 
[bookmark: _Toc82947696][bookmark: _Toc82954861][bookmark: _Toc82954968][bookmark: _Toc82954991][bookmark: _Toc82955030][bookmark: _Toc83562414]A note on the rows and max_line properties .

The rows clause in a table definition determines how many row are visible at any one time .
For source objects that are functions or arrays the max_line property of a table determines how many rows there are in the whole table including the rows that are not visible. This implies MyTable.max_line >= MyTable.rows. If max_line is not set the table will not display any data.
For tables with a file as source set max_line does not apply and is ignored if declared.

[bookmark: _Toc82947697][bookmark: _Toc82954862][bookmark: _Toc82954969][bookmark: _Toc82954992][bookmark: _Toc82955031][bookmark: _Toc83562415]Table and list box functions

There are a number of functions which help to manipulate and interrogate tables and list boxes. See samples/tables/table2.r for working examples in conjunction with the following list of table functions as well as the main Sculptor reference manual in SCULPTOR/help. For most functions the standard help is sufficient but where further elaboration is useful the function in question is detailed in these notes below.

is_selected() Determine if a line in a listbox or table is selected
listbox_add() Add lines to a listbox
listbox_count_all() Count the lines in a listbox
listbox_count_selected() Count the selected lines in a listbox
listbox_delete() Delete a line from a listbox
listbox_get_selected() Retrieve selected value(s) from a listbox
listbox_get_value() Retrieve value(s) from a listbox
set_selected() Select or deselect a line in a table or listbox
table_check_input() Checking a table for unsaved input in a textbox cell
table_first_selected_key() Copy key values of first selected record (file-driven tables)
table_focus_cell() Send focus to a specified table cell
table_get_key() Copy key values from a table to the source file buffer
table_is_selected_key() Test whether the record in the file buffer is selected (file-driven tables)
table_next_selected_key() Copy key values of next selected record (file-driven tables)
table_set_default_data() Set a default value for all cells in a table column
table_set_key() Scroll a table so that the record in the file buffer is displayed in a specified row (file-driven tables)
table_set_selected_key() Select/deselect the record in the file buffer (file-driven tables)
table_set_type() Set edit type for all cells in a table column

[bookmark: _Toc82947698][bookmark: _Toc82954863][bookmark: _Toc82954970][bookmark: _Toc82954993][bookmark: _Toc82955032][bookmark: _Toc83562416]table_get_key(obj_id, relative_row)

This function is for use where the source object is a file only.

We have seen that when a row of a table is clicked on, the display object will be assigned the values of the row. In the case of a file as source object, if the display object was something other than the file buffer and you wished to read the file corresponding to the line selected, you would need to use the table_get_key() function to copy the key values into the file buffer and then read the file to fill the rest of the buffer. You could also use the key fields of the display object , assuming the display object contained all the relevant fields.
	
There is an important point to make that the row parameter to table_get_key() is relative to the visible part of the table but the row number in which an event function , say responding to EV_SELECT , is absolute to the table. Therefore when we call table_get_key() we need to convert. For this we make use of tabid->topline which tell us the absolute top line of the visible part of the table.

Eg we have a table with 100 lines in total but only 20 lines visible at one time. If an event function is called , say ev_Select(tabid, absrow) , when the table is showing lines 11-20 and furthermore , the absolute row is 12 we need to use tabid->topline thus :-

table_get_key(tabid,absrowno – tabid->topline + 1)

Here , absrow = 12 , topline = 11 . We require relative row 2 , so :-
 absrowno – tabid->topline + 1 yields
12 – 11 + 1 = 2 as required

See examples/tables/table2.r

[bookmark: _Toc82947699][bookmark: _Toc82954864][bookmark: _Toc82954971][bookmark: _Toc82954994][bookmark: _Toc82955033][bookmark: _Toc83562417]table_set_key(obj_id, abs_topline , relative_row)

Again , this function applies only to tables with a file a source object. It sets the table such that the values currently in the file buffer appear in the given relative row . The topline is potentially difficult to know. If it is possible to calculate accurately then use the known value , otherwise use an approximation. If you simply set topline to 1 then you will not be able to scroll back in the table immediately but scrolling forward again will restore things.

[bookmark: _Toc82947700][bookmark: _Toc82954865][bookmark: _Toc82954972][bookmark: _Toc82954995][bookmark: _Toc82955034][bookmark: _Toc83562418]Editable tables

The following section should be read in conjunction with samples/tables/table3.r to which reference is made throughout.

We make a table editable simply by declaring a record structure which contains information about the cells in the table and setting one or more of its member fields at a suitable point in the program initialisation. We set the table's cell_properties property to this record and then, at program startup, set the cell properties. At this time, we are only interested in one of the many cell properties - the cell type. There are many cell properties you can set , see cell properties in the main reference manual.

Eg

!record MyCellProperties {
		cell_type ,, i4[NCOLS]
}

In this example we set the cell properties field of a table to MyCellProperties.cell_type for column 1 to a text box. Column 2 or any other columns will have no properties set and will be readonly.

		MyCellProperties.cell_type[1] = TCT_TEXTBOX

This command sets the whole of column 1 (only) to a textbox type which can then be edited. There are other types that we can set the cells to, such as buttons etc. See the demo in the Sculptor/demo/controls directory.

[bookmark: _Toc82947701][bookmark: _Toc82954866][bookmark: _Toc82954973][bookmark: _Toc82954996][bookmark: _Toc82955035][bookmark: _Toc83562419]Table event functions for EV_VALIDATE and EV_SELECT

A table definition has a clause for a general event. It is up to the programmer to separate out the event he is interested in. In this example we are only interested in SELECT and VALIDATE but there are lots of others such as GAIN_FOCUS, LOSE_FOCUS etc. As always , check the main Sculptor help for a full list by searching on event code.

event = evMyEvent
event_enable = EV_VALIDATE | EV_SELECT

The parameters passed to this function are slightly different depending on the event. In the definition above, evMyEvent will be called whenever anything happens to the table unless, as we already know, we add and event_enable clause to filter out only the ones we are interested in.

For EV_VALIDATE the parameters will be :-
!function evMyEvent(evcode,tableid,row, col, data)

For EV_SELECT the parameters will be :-
!function evMyEvent(evcode,tableid,row, state, col)

Here state refers to the selected or unselected state of the line after the event.

[bookmark: _Toc82947703][bookmark: _Toc82954868][bookmark: _Toc82954975][bookmark: _Toc82954998][bookmark: _Toc82955037][bookmark: _Toc83562421]TAB windows

Tab windows are child windows with a common parent which overlay each other. Any window can be a child window of another simply by setting the "parent" clause in the properties of the window. A child window is only open if the parent is open and moves around with the parent. The parent must have its style property set to WS_TABCONTROL

Look at and run the skeleton example samples/controls/tabwin in conjunction with the following section.

To create a set of tab windows follow the procedure :-

1. Create a window called, say, Tab0 with style = WS_TABCONTROL . Ensure that Tab0 has wintask as a parent .
2. copy and paste this window N times to create windows called, say, Tab1, Tab2, Tab3 ... In each case set the parent to Tab0.

Having created a set of tabs we may now want to consider detecting when a user selects a tab. The tab container window receives the EV_SELECT_TAB event code, assuming you have enabled this event, then when a tab is selected and the event function is called with parameters :-

	!function evMyTabWinEvent(evcode, wintabcontainer, wintab)
	
The 3rd parameter tells you which tab is being selected .

Eg

	!function evMyTabWinEvent(evcode,wintabcontainer,wintab) {

		if (wintab ?= Tab1) {
			ProcessTab1()	
		}

Exercises 13

Write a program chap13/ex1.r to do order entry and lookup orders, stockitems and customers.
There should be three tabs
Tab1 :
Order Entry to allow scroll through the orderhead file with next/prev	
	An editable table of ordeline associated with the ordhead record
	A new button which will clear the display, and allocated the next order number in sequence. Use wind/prev on ordhead for this. The order number should be displayed but not editable.

	A Save button to save whatever is on the screen . You may want to use the check command to tell you if you have a record locked for this .

Tab2 :- Simple readonly table fed by stockitems
Tab3 Simple readonly table fed by customers

